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S P O N T A N E O U S  A X I S Y M M E T R I C  S W I R L I N G  I N  A N  I D E A L L Y  

C O N D U C T I N G  F L U I D  I N  A M A G N E T I C  F I E L D  

B. A. Lugovtsov  UDC 532.516+538.4 

The problem of spontaneous swirling was considered in [1-7] and is as follows: can rotary motion occur 
in the absence of external rotat ion sources, i.e., under conditions where motion without  rotat ion is realizable? 

A more rigorous formulation of this problem was given in [5, 6]. The formulation proposed there ensures 
a strict control of the kinematic  flow of the axial component  of the angular momentum,  which eliminates inflow 
of the rotating fluid in the flow region. The  occurrence of rotary motion is regarded as a bifurcation of the 
initial axisymmetric flow as a result of the loss of stability against swirling flow [1]. 

In [5, 6], it is shown that  the bifurcation "axisymmetric flow-rotationally symmetr ic  flow" (and the 
corresponding plane analog of this transition [6]) does not occur for an arbitrary compressible fluid with a 
variable viscosity coefficient. In the case of the plane analog, this s tatement  is also valid for a conducting 
fluid moving in the presence of a magnetic  field. It has been shown [7] that  for axisymmetric flow of a viscous 
incompressible fluid with a finite conductivity, axisymmetric spontaneous swirling is impossible if the meridian 
section of the flow region is simply connected. 

For an ideally conduct ing fluid, the character of connectedness of the flow region is of no significance, 
because, in axisymmetric flows of such a fluid, the poloidal components  of the magnetic field do not disappear 
in any case because of the frozen state. 

In this paper, we give an example of the occurrence of spontaneous swirling in the initially axisymmetric 
flow of an inviscid, ideally conduct ing fluid in a magnetic field. 

In the generally adopted notat ion (the fluid density p = 1) in the cylindrical coordinates r, ~, z, the 
equations that  describe such flow are of the form 

u t + u u , + w U z - - - +  p +  h 2 = h l h a , - + h 3 h l , . - - - + f x ;  (1) 
r r r 

wt + uwr + WWz W ( p +  l h  2)  = hlh3r + h3h3z + f3; (2) 
z 

~t  + uk~r + w ~ z  = O, hl = - l  qtz, h3 = l ~r ,  h =  
H 

r r (3 )  

These equations describe the poloidal (radial and axial) components of the velocity, u = - ( 1 / r ) r  and 
w = (1 / r ) r  and of the magnet ic  field, hi and h3, where fl  and f3 are the corresponding components  of the 
external mass forces. 

The azimuthal  components  of the velocity, v~ = v, and of the magnetic field, h~ = h, fit the equations 

uv h lh  
vt + uvr + WVz + ~ = hlh,. + h3hz + - - ,  (4) 

r F 

uh h lv  
ht + uh,. + whz  - ~ = hlv,. + h3vz - - -  (5) 

r r 

On the boundary of the axisymmetric region D, the conditions vn  = 0 and h n  = 0 should be satisfied. 
Here n = (nr, 0, nz)  is the external unit  normal to the boundary of the flow region D. 
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The law of conservation of energy is satisfied for this system. We denote 

1 9 w2 2 91 - 8p = ~(u" -4- -4- hi -t- h32), e~ = (v 2 -4- h2). 

Here ep is the energy density of the poloidal components of the velocity and the magnetic field, and ~,  is 
the energy density of the azimuthal components of the velocity and of the magnetic field. By virtue of Eqs. 
( 1 ) - ( 5 )  we  h a v e  

d /(r + r = f (ufl + wf3)rdrdz. 
D D 

In this case, the following equalities are satisfied: 

s  ~--/u(v2-h2)drdz+/(~fl  
D D D 

d / u(v 2 h 2) dr dz. -dr / re~ dr dz = - 
D D 

The last two relations show that, in axisymmetric flows, the poloidal and azimuthal components can 
exchange energy, in contrast to the plane analog of the flow considered, in which this exchange is absent and 
the corresponding energy components do not vary with time if the external forces are equal to zero. 

However, the mere fact of exchange does not suggest the possibility of spontaneous swirling. This can 
be seen from the fact that ,  in the absence of a magnetic field, the exchange occurs, but spontaneous swirling 
is impossible, because, in this case, from Eq. (4) we obtain 

d 
[ r3 v2 dr dz "-" O. 

dt J 
D 

As mentioned above, for spontaneous swirling to occur, a mechanism must exist that  ensures counter 
gradient flow of the axial component of the angular momentum. We show that,  in the presence of a magnetic 
field, this mechanism can lead to the initiation of spontaneous swirling. 

We assume that ,  in a certain axisymmetric region D, there is a stationary solution of system (1)- 
(5) that satisfies the boundary conditions vn  = 0 and h n  = 0, so that C0(r,z) = $~o(r,z) ,  v = 0, and 
h = 0 for ./'1 = 0 and f2 = 0, where $ is a constant. Such flows exist. An example is the well-known Hill 
magnetohydrodynamic vortex with flow inside a sphere on which r = ~ = 0. 

We set A = v + h and B = v - h. Then, for A and B from Eqs. (4) and (5) in a linear approximation 
we have 

At + (.k - 1)h01Ar + ()~ - 1)ho3Az + (.X + 1) h~ B = 0, 
r 

Bt + (.X + 1)h01Br + ($ + 1)ho3Bz + (~ - 1) h~ = 0, 
r 

where h01 and h03 are the corresponding components of the steady magnetic field. 
From these equations we have the following conservation law: 

[(1 - a ) A  2 + (1 +  )B lrerez = O. 

D 

Hence it follows that ,  for It[ < 1, i.e., for a sufficiently strong field, the initial flow (in a linear 
approximation) is stable against swirling. 

Let I = 1. If we now specify an infinitely small perturbation v = v0(~0) and h = 0 for t = O, the linear 
problem of the stability of the initial flow has the solution 

~b0z 
A = + B = 

840 



and, hence, 

v = v0(@0)(1 + ~'~ t ) , r 2  h = vo(~bO)~r@t. (6) 

Thus, in this case, the initial steady flow is unstable and, as a result, a swirling flow occurs. If, under the 
same initial conditions, the initial poloidal components  of the velocity and the magnetic  field are maintained 
so that  r = ~ = r by means of the external mass forces fl  = - ( v  2 - h2)/r  and ./3 = 0, Eqs. (6) are an exact 
solution of system (1)-(5). Of course, the introduction of these forces is an artificial expedient ,  but,  with no 
magnetic field, swirling is impossible with any external forces having only poloidai components .  

This example shows that ,  in axisymmetric flows, the flow of the angular m o m e n t u m  related to the 
magnetic fields can lead to the occurrence of a mechanism that  ensures counter gradient flow of the mechanical 
angular momen tum,  which maintains differential rotation, and, hence, spontaneous swirling can occur. 

Note that  the instability that  is found is a new, previously unknown type of instability in 
magnetohydrodynamic flows. 

This work was supported by the Russian Foundation for Fundamental  Research (Grant No. 96-01- 
01771). 
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